
CurExt

Typesetting variable-sized curved symbols

Azzeddine Lazrek

Department of Computer Science, Faculty of Science,

University Cadi Ayyad, P.O. Box 2390, Marrakech, Morocco

Phone: +212 44 43 46 49 Fax: +212 44 43 74 07

lazrek@ucam.ac.ma

http://www.ucam.ac.ma/fssm/rydarab

Abstract

The main goal of this contribution is to present a program that allows the com-
position of variable-sized curved symbols such as those occurring in mathemat-
ics. This application, called CurExt, extends the capabilities of the well-known
system TEX designed by D. E. Knuth for typesetting. Big delimiters, such as
brackets, or special curved symbols, such as the Arabic mathematical symbol of
sum, can be built automatically according to the size and the shape of the con-
cerned mathematical expression. CurExt will make it possible to stretch Arabic
letters according to calligraphic rules in order to draw the kashida. It follows
a useful tool for justifying texts written with Arabic alphabet. Unlike in Latin
alphabet based writing, where the justification is done through inserting small
blanks among characters, cursive writing fills in the space between characters
with the kashida.

The problem

Variable-sized symbols Besides fixed size

symbols, such as characters of Latin alphabet in a
given font or basic mathematical symbols (e.g., +,
−), there are symbols with a context dependant size.
Some mathematical symbols, such as delimiters or
Arabic characters, are examples of these variable-

sized symbols. The variation of size can concern:

• the width of the symbol, such as in:

– the various parts of some symbols (e.g.,
〉

or
�
, ⇒). A horizontal stretching,

according to the expression covered by the
operator, is sometimes necessary;

– the kashida for some characters of the
Arabic alphabet (e.g., � � , ���) or certain
Arabic mathematical symbols such as th-
ose found in the abbreviations of usual fun-
ctions (e.g., � � , �
	�� , ����) in
mathematical expressions. The kashida� , a small curve, is used to stretch some
characters in order to cover the concerned
mathematical expression or to break the
line when the left margin is reached;

– some diacritics or accents (e.g.,

abc, abc, âbc, ãbc,
←−
abc,
−→
abc,

︷︸︸︷
abc , abc︸︷︷︸ or�
���

︸︷︷︸ �
︷︸︸︷����� � −→�
��� � ←−�
��� � ˜�
��� � ̂�
��� � ����� � �����).

• the length of the symbol, such as in:

– delimiters (e.g., 〈, (, |, [, ||, {, }, ||,], |,), 〉);

– symbols of operators (e.g.,
∫

or � , � � ,
⇑).

• the width and the length of the symbol, such
as in some mathematical symbols:

(e.g.,

√
or �).

Production of the variable-sized symbols

Various approaches can be adopted to produce var-
iable-sized symbols:

• Through measuring : glyphs are then made on
the basis of measurements directly taken from
the context of the symbol. This manner leads
to a very high precision but a posteriori. A
second processing of the text is absolutely nec-
essary, after a first one where measurements of
sizes are taken and recorded. The glyphs can be

TUGboat, Volume 0 (2060), No. 0—Proceedings of EuroTEX 2003 1001

Azzeddine Lazrek

produced once the measurements made. This
way of proceeding makes it possible to have one
glyph of sign per size through dynamic fonts.

• Ready to wear : standardized sizes are deter-
mined. Glyphs are then drawn according to this
set of sizes. No second processing will be neces-
sary of course. The precision cannot reach the
level attained through the previous manner. A
glyph of sign per interval of sizes, through static
fonts, is then produced a priori.

• Semi-finished : a combination of the two pre-
vious ways.

There is a difference between producing these
glyphs and using them. The production can be
done through programs, with parameters to be de-
termined, with METAFONT or PostScript. A par-
ticular system of edition will be necessary to make
use of the glyphs. This system will be used to send
the required parameters to the previous program for
generating the fonts.

Curvilinearity of the variable-sized sym-

bols Besides symbols drawn with segments (e.g.,
[,], ⇒), there are variable-sized symbols composed
with small curves (e.g., (,),

∫
). Thus, the extensi-

bility of the symbol should be done in the respect
of this curvilinearity. The task becomes difficult for
the shapes of the curves that vary according to the
size. Then, the problem is not limited to stretching
or lengthening these curves. It consists of produc-
ing curves according to different sizes. As far as we
know, up till now, there is no system that allows the
production of variable-sized curved symbols through
parameterized dynamic fonts. Say, for example, cur-
vilinear variable-sized parenthesis. Neither the sys-
tem TEX [4] nor MathType1 offers such possibility.
An attempt had been made with Math-Fly3 font [1]
over the system Grif/Thot4 [9]. It didn’t go far
from the step of experimentation nor has it been
added to the system. The system Ω6 doesn’t offer
the possibility of producing such symbols. An ex-
tension to ditroff/ffortid7 allows the abilities to

1 MathType is an equations processing system, including
Equation Editor, from Design Science, Inc.2

2 http://www.mathtype.com or http://www.dessci.com
3 Math-Fly is a parameterized PostScript type 3 font.
4 Thot is an interactive system for the production of struc-

tured document. Thot is an evolution of the Grif system de-
veloped by the Opera team with the INRIA and the IMAG.
Amaya, the navigator of W3C5, is based on this system.

5 http://www.w3.org
6 http://omega.cse.unsw.edu.au
7 ditroff/ffortid is a system for formatting bi-

directional text in Arabic, Hebrew and Persian developed by
J. Srouji and D. M. Berry [10].

stretch letters themselves with dynamic PostScript
fonts [2].

A very detailed survey on the ways for produc-
ing variable-sized symbols and the general problem
of the optical scaling can be found in [1].

The parentheses in big sizes, say, for example,
those of matrices offered by the system TEX, are

such that:

. Can we get curved parentheses

such as: ?

In the same way, one can wonder how to pro-
duce kashida so as to get the correct writing: � � ,

instead of the simple straight-line lengthening: � � � � ��� � � .

Variation of symbol’s size in TEX

The system TEX handles the problem of pro-
ducing variable-sized symbols through two different
ways at the same time, with the Computer Modern

font developed by D. E. Knuth in METAFONT [5]:

• through the production, a priori, of glyphs

up to some sizes8 (e.g.,

((((
()

)))
)

), using

the primitive charlist from METAFONT;

• through composition, starting from small pa-
rts, whenever the size goes beyond some level

(e.g.,

), using the primitive extensi-

ble from METAFONT. Horizontal or vertical seg-
ments are then added to get the desired size

(e.g., ︸︷︷︸
︸︷︷︸
︸︷︷︸
︸ ︷︷ ︸
︸ ︷︷ ︸

or

{{{{
{).

When a certain limit of size is reached, some
symbols can’t be extended any more8

(e.g., â, âb, âbc, âbcd, ̂abcde).

8 Some other sizes can be obtained by yhmath package,
that extended math’s fonts for LATEX, developed by Y. Hara-
lambous CTAN:/macros/latex/contrib/supported/yhmath

1002 TUGboat, Volume 0 (2060), No. 0—Proceedings of EuroTEX 2003

CurExt Typesetting variable-sized curved symbols

The primitives \Bigg, \bigg, \Big and \big

(e.g., \Bigg(... \Bigg)) denote various possibili-
ties of extension that the user can handle to get the
desired size. The primitives \left and \right (e.g.,
\left(... \right)) allow an automatic determi-
nation of the size according to the context.

The compiler TEX keeps room for each charac-
ter. The character is considered as a rectangular
box, with a width and length, on a baseline, passing
between the height and the depth. These values are
taken from the corresponding TFM’s files of the fonts
in use.

The font should be determined a priori in the
preamble of the document. No specification of size
will be allowed while the document is processed. A
possibility of magnification, for all text, is allowed a
priori, in the preamble of the document. This mag-
nification consists of a reduction or an enlargement
of the font.

Curvilinear extensibility

Parameters of dynamic font Hereafter, a
solution for obtaining variable-sized curved symbols
is proposed. The particular case of parentheses,
brackets of a mathematical expression, will be pre-
sented in detail, as an example of vertical exten-
sibility. The kashida, as an example of horizontal

extension, will be presented also. It goes without
saying that all other variable-sized curved symbols
can be handled in the same way.

The size of such symbols is determined a poste-
riori according to the context. Instead of taking the
size of the symbol from the TFM’s files of the speci-
fied font, this size is computed starting from the size
of the mathematical expression covered by the sym-
bol. The required room is then reserved (using the
TEX primitives \hbox and \vbox with \wd, \ht and
\dp). Then, the program METAFONT is called for gen-
erating the fonts according to the taken sizes. Thus,
dynamic fonts are built.

The necessary repetition of processing is not a
problem, for the compiler TEX who should be called
already, two times at least, for the table of the con-
tents, the bibliography, the index, etc.

This way of processing will lead to the following
constraints:

• there is a need for one font per character. The
system TEX can use simultaneously up to 16
fonts. This can be a restriction of the number
of variable-sized symbols that can be processed;
• for every variable-sized symbol, a file for stor-
ing the sizes computed after the first compila-
tion is required. The number of files allowed by
TEX for the input/output (by using the primi-

tives \read and \write) is limited to 16. That
also limits the number of variable-sized symbols
to deal with;

• the program METAFONT allows up to 256 sy-
mbols per font processed by TEX. This seems
to limit the number of different sizes of glyphs.
This is not a true limitation because the width
of a symbol is already limited by the width of
the sheet and it is so for the length.

Actually, the number of required files can be
reduced through the use of the same file for each
pair of delimiters: the closing bracket is generally
required wherever an opening one appears. Thus,
the same file will be used for the two brackets. An-
other reduction of the number of required files may
be carried out through recording a size only once
for all the occurrences of a given symbol at a given
size. TEX doesn’t allow the use of a file in input and
output. A file opened in output will be overwrit-
ten whenever it is called once again for input and
conversely. This leads to the use of an intermediate
temporary file to look for any possible existence of a
given size. This file will be used for all variable-sized
symbols handled.

As it was said before, the number of sizes of
a variable-sized symbol is limited up to 256. Be-
yond this limit, the system will use the smallest size
higher than the required one. The system holds the
biggest size as default size. The intermediate file
used previously will be used to determine this size
of substitution. This will be done for all variable-
sized symbols.

The size of an extensible symbol of an expres-
sion can be given if the expression itself does not
comprise another extensible symbol. A problem ari-
ses when several extensible symbols are overlapping
in the same expression. TEX and METAFONT should
be called as many as variable-sized symbols overlap.
The TFM’s and *PK’s files must be cleared in other
to compute them every time with the news sizes as
font’s parameters, as might look like at following:

TEX
tex DVI

PS
PDF

-

TFM *PK

clear

´µ

6

Parameters of glyph During the develop-
ment of such as dynamic font of variable-sized sy-
mbols, some difficulties arise to determinate:

TUGboat, Volume 0 (2060), No. 0—Proceedings of EuroTEX 2003 1003

Azzeddine Lazrek

• the shape of the glyph according to the di-
mensions of the character (e.g., the curvilin-
earity, the level of concavity or convexity, of a
bracket);

• the shape of the glyph of small sizes charac-
ters and that of big sizes;

• the position of the glyph, points of control,
according to the dimensions of the character;

• the dimensions, the width and the length, of
the box of the character;

• the position, the height and depth, of the
character compared to the baseline;

• the position of the character with respect to
the other characters of the same line, the blank
between characters;

• the position of the character compared to the
expression covered by this character;

• etc.

Choices should be made with respect of:

• the nature of the symbol that determines the
space before and after the composed symbol
(e.g., \mathinner);

• the lengthening to be added to the initial
length (respectively the width) of the expres-
sion covered by the brackets (respectively the
kashida) under the terms of the rules of the ty-
pography;

• the form of boundaries of kashida in other to
join it with the proceeding part and/or the fol-
lowing one (e.g., for the symbol of sum, product
and limit);

• etc.

For example, the parameters that determine the
brackets are:

• the level of curvilinearity of the bracket;

• the level of fat of the middle of the bracket;

• the level of fat of the ends of the bracket;

• the shape of the ends of the bracket, as they
are to be identical in the top and the bottom;

• the shape of the bracket depends on the size
of the covered expression.

Examples�
1 2 3

4 5 6

7 8 9 � 0 1 2 3

4 5 6 7

1 2 3 4

5 6 7 8

0 1 2 3 4

5 6 7 8 9

0 1 2 3 4

5 6 7 8 9

0 1 2 3 4

The kashida always holds the same thickness
but the concavity of the kashida varies within lim-
its fixed by the rules of the calligraphy of the style
Naskh [3].

The symbol � � � � ��� � � obtained by the command

\lsum, from the system RyDArab9 [7] [8], is a com-
position of the fixed part � � 	 , obtained with the xnsh

font from ArabTEX10 [6], and of the extensible rec-
tilinear part
�
�
 whose effective size depends on an

automatic way of the context.
The symbol �� obtained by the command

\csum, from the system RyDArab with the present
package CurExt, is a composition of the fixed part� , of the font NasX11, and the variable-sized cur-

vilinear part kashida � whose effective size depends

on an automatic way of the context. The problem
of drawing these parts of a component symbol arises
then.
Examples�� �
1− � − � − � = � �� �

1− � − � = � �� �
1− � = �

Syntax of commands Hereafter, some com-
mands offer by CurExt package.

The syntax for parentheses command is:
$\parentheses

{\matrix{1 & 2 & 3\cr

4 & 5 & 6\cr

7 & 8 & 9\cr

}}$

�
1 2 3

4 5 6

7 8 9 �
The syntax for open (or left) parenthesis com-

mand is:
$\openparentheses

{\matrix{1 & 2 & 3\cr

4 & 5 & 6\cr

7 & 8 & 9\cr

}}$

�
1 2 3

4 5 6

7 8 9

The syntax for close (or right) parenthesis com-
mand is:

9 The extension RyDArab is a system for processing ma-
thematical documents in an Arabic presentation. It allows
the composition of mathematical expressions with specific sy-
mbols spreading out from right to left according to the Arabic
writing. It has been developed by the author.

10 The extension ArabTEX is a system for processing Ara-
bic textual document. It has been developed by K. Lagally.

11 The font NasX is a kernel of an Arabic mathematical
font. It offers some Arabic literals symbols. It has been
developed by the author.

1004 TUGboat, Volume 0 (2060), No. 0—Proceedings of EuroTEX 2003

CurExt Typesetting variable-sized curved symbols

$\closeparentheses

{\matrix{1 & 2 & 3\cr

4 & 5 & 6\cr

7 & 8 & 9\cr

}}$

1 2 3

4 5 6

7 8 9 �
The syntax for open (or right) parenthesis, in

an Arabic mathematical presentation, command is:
\arabmath

$ {\openparentheses

{{\matrix{1 & 2 & 3\cr

4 & 5 & 6\cr

7 & 8 & 9\cr

}}}}$

3 2 1

6 5 4

9 8 7 �
The syntax for Arabic sum command is:

\arabmath

$ {\csum_{b=T-1}^{s}}$ �� �
1− � = �

The syntax for Arabic product command is:

\arabmath

$ {\cprod_{b=T-1}^{s}}$ ��
	 �
1− � =

The syntax for Arabic limit command is:
\arabmath

${\clim_{c \to 0}

c{{}^2}}$

2 ����� �
0←

�
The syntax for Arabic kashida command is:

\arabmath

$ {\kashida{9mm}}$ �
Conclusions

The application CurExt allows the composi-
tion of variable-sized curvilinear symbols. This sys-
tem will make it possible to compose automatically
delimiters of mathematical expressions that can vary
in a bi-dimensional way. It also allows the composi-
tion of kashida of the Arabic mathematical symbols
such as the symbols of sum, product and limit.

The number of various sizes for the brackets or
the kashida is limited to 256. Beyond this limit,
the system will use the smallest size higher than the
required one or the biggest size already computed.
The number of occurrences of the same size is un-
limited.

A choice of the parameters to compose brack-
ets is made with respect of typographic and calli-
graphic rules in use. A compromise between certain
parameters is necessary. In some cases, the choice is
subjective.

The system CurExt will allow looking after the
typography of the variable-sized curvilinear symbols
such as brackets or the symbol of integral. It also
makes it possible to take into account the compli-

ance with the rules of the calligraphy of a cursive
writing such as Arabic. The kashida will be carried
out in the strictest respect of Arab calligraphy.

A significant application of such a system will
be the justification of a text in a cursive writing
through complying with the calligraphic rules.

In addition to the previous limits, METAFONT

fonts under an ASCII encoding generate many prob-
lems on the new formats of multilingual electronic
documents. A study is started for PostScript Type

1/3 or OpenType fonts under an Unicode encoding.

References

[1] Jacques André and Irène Vatton, Dynamic

optical scaling and variable-sized characters,
EPODD 7 (1994), no. 4, 231–250.

[2] Daniel M. Berry, Stretching Letter and

Slanted-baseline Formatting for Arabic, Hebrew

and Persian with ditroff/ffortid and Dy-

namic POSTSCRIPT Fonts, Software–Practice &
Experience (1999), no. 29:15, 1417–1457.

[3] Mohamed haCm al XTaT, Les règles de la

calligraphie arabe, Ensemble calligraphique des

styles d’écritures arabes, Univers des livres,
Beyrouth, Liban (1986).

[4] Donald Ervin Knuth, The TEXbook, Addison-
Wesley, 1984.

[5] , The METAFONTbook, Addison-
Wesley, 1986.

[6] Klaus Lagally, ArabTEX - Typesetting Ara-

bic with Vowels and Ligatures, EuroTEX’92,
Prague (1992).

[7] Azzeddine Lazrek, A package for typesetting

Arabic mathematical formulas, Die TEXnische
Komödie, DANTE e.V. 13 (2001), no. 2/2001,
54–66.

[8] , Aspects de la problématique de la

confection d’une fonte pour les mathématiques

arabes, Cahiers GUTenberg 39–40, Le docu-

ment au XXIe siècle (2001), 51–62.

[9] Vincent Quint and Irène Vatton, Grif: an

interactive system for structured document ma-

nipulation, Text Processing and Document Ma-
nipulation, ed. J. C. van Vliet Cambridge

University Press, Cambridge, UK (1986),
no. 4, 200–213.

[10] Johny Srouji and Daniel M. Berry, Arabic

formatting with ditroff/ffortid, EPODD 5

(1992), no. 4, 163–208.

TUGboat, Volume 0 (2060), No. 0—Proceedings of EuroTEX 2003 1005

