Justify just or just justify

Mohamed Elyaakoubi, Azzeddine Lazrek

Department of Computer Science, Faculty of Science,

Cadi Ayyad University

P.O. Box 2390, Marrakesh, Morocco

lazrek (at) ucam (dot) ac (dot) ma

http://www.ucam.ac.ma/fssm/rydarab

Abstract: This paper describes a formalism for the justification of texts written in an Arabic alphabet-based script within the respect of some approved calligraphic rules. It presents an improvement of the typographical quality produced by current publishing systems. Particularly, we improve the optimum fit algorithm through taking into account the existence of allographic variants and stretched forms with kashida provided by the font. Actually, this sophisticated algorithm breaks the paragraph into lines the best it can. Thus, it allows electing the optimal version among several variants. The approach adopted can be extended for the composition of multilingual texts.

Key-words: Multilingual typography, Arabic calligraphy, Text justification, Optimum fit algorithm, Smart font, Publishing system.

1 Introduction

It is a common knowledge that typography has a strong moral resonance in electronic publishing and textbooks production [23][24]. Readability is one of the primarily concerns of information designer. The result of the complete presentation process of contents should have a satisfactory quality. Especially, presentation of textual material is intended to be legible and to communicate meaning as unambiguously as possible. A design talent alone will not be sufficient to convey a message to book readers or Website visitors, text does. A reader should be assisted in navigating around text with ease, by optimal inter-line spacing, inter-letter, inter-word and particularly text justifying, coupled with appropriate line length and position on the page.
When we move away enough from a printed page of text, we can not distinguish characters but some black space on the white sheet. That is the so called color of the text or typographical gray. Thus, the typographical gray is an impression produced on the eye by the global vision of a page of text and has a significant influence on the legibility.
Of course, the typographical gray depends on the direction of the script and its environment. A left-aligned text, also called flush-left, provides a ragged right edge. A text centering produces two ragged edges on both sides and a justification normally gives balanced margins on both sides of the text. The choice of an alignment mode depends on the preferences of the produced typographical grays. This choice should be approved taking into account how the text will be perceived by the human eye. The most common justification algorithms adopted by typesetting programs operate through inserting spaces between words. Obtaining a uniform typographical gray has never been an easy business. The main reason for this is the impossibility to get an equal inter-word space among in different lines. Without being a universal agreement, it seems that in the absence of appropriate algorithms for a left-to-right text, unjustified or ragged-right settings could be preferred. The rivers and the alleys, produced by the random disposition of spaces in superimposed lines in a justified text, produce an uncomfortable effect for the reader, because the irregular spaces catch his visual attention. The resolution of such problems is in relation with micro-typography, and delicate typographic rules governing the letters design, typefaces and spaces between glyphs while the macro-typography considers the text as a block on its own, and look at the overall structure of the page [16]. Therefore, we can guide the reader not only by the good placing of text blocks on the page, but also by using different typographical features and taking care of text block regularization. Typographers should be familiar with vision and macro/micro legibility problems.

Nowadays, typography is not only a typographers’ job; information technology opened the art of books and Websites design to many people. Authors have today the possibility of preparing and influencing the design of their texts.

Many of computer users get into publishing systems -Web authoring and text processing- without any formal design training and they expect that a desktop publishing program will make everything automatically. Consequently, Developers should work on high level typographic computer program, and should take such ideas seriously and not just as ideates of perfectionists.

2 Breaking paragraph into lines

Before focusing in proper justification, let us remark that a typesetting system has to break paragraph into lines. A line-break is usually placed in a word boundary, after a punctuation mark. It can also occur following a hyphen
. Sometimes, a break between two given words is not recommended; for instance, within a full name of a person or inside a compound word. In such situations, the word split can usually be avoided through using a hard space. However, the automatic recognition of such situations is still beyond the possibilities of most typesetting systems. Actually, it refers to a semantic recognition of the text. Therefore, breaking paragraph into lines is a problem of optimization based on various criteria. Different algorithms are in use.

2.1 Greedy algorithm

An easy way for breaking the paragraph into lines is to use the greedy algorithm. This algorithm consists basically on putting as many words as the line can contain. Then, the system repeats the same in the next line, and so on. The process is repeated until there are no more words in the paragraph. The greedy algorithm is a line-by-line process. Each line is thought for itself. The following pseudo-code implements this algorithm for left-to-right texts:

SpaceLeft = LineWidth

for_each Word in Text

if Width(Word) > SpaceLeft

insert LineBreak before Word in Text

SpaceLeft = LineWidth - Width(Word)

else

SpaceLeft = SpaceLeft - (Width(Word) + SpaceWidth)

Where LineWidth is the width of a line, SpaceLeft is the remaining width of space on the line to fill, SpaceWidth is the width of a single space character, Text is the input text to iterate over and Word is a word in this text. This algorithm is very simple and faster, and it puts the list of words to be broken in a minimum number of lines. It is used by many text processors such as Open Office and Microsoft Word.

2.2 Optimum fit algorithm

The justification of some lines can somehow be sacrificed to improve other lines -not necessarily those that follow them immediately-. The main goal is to get an optimum result at the level of the whole paragraph.

In the following example, suppose that the problem consists on breaking the sequence xxx xx xx xxxxx over a given width: xxxxxx. The result produced by the greedy algorithm will be:

xxx xx

xx

xxxxx
A too long line followed by a short one gives a rather unpleasant pair of right edges. In contrast, the same paragraph processed with a paragraph-based line breaking algorithm, called optimum fit, yield a better right margin. The solution would look like this:

xxx

xx xx

xxxxx
The key idea behind the paragraph-based algorithm is to use a dynamic programming to globally optimize some aesthetic cost function [10]. The strategy adopted in optimum fit algorithm is:

· at a given distance from the beginning of the line, one can find out a break. Several points can be candidates for breaking the line;

· for each line-break, we define a cost function ei, error on the line i;

· ei = 0 if the line is perfect, if a line composition is not possible, ei will be ∞;

· find the best arrangement to minimize the total errors e = ∑ei for all the lines in a paragraph.

This principle was first introduced by Donald E. Knuth and used in TEX [11]. This algorithm will be discussed in more details in section 3.
3 Justification in Latin typography

3.1 Spacing

The breaking paragraph into lines algorithms are designed to search for an optimum paragraph breaking into lines, of course, each one in its way. Big deals of good manners were developed to justify the lines to the right column-width. The most common consists on adjusting the spaces between words and even between characters. The constraint is to obtain lines that end on the right margin.

To give a line the necessary flexibility, a space, or its equivalent between two words, is not always changed into space’s character. Some of these spaces are transformed into lines ends. Others are transformed into triple (id, max, min); spaces with variable widths. These spaces have a normal size id that can be stretched up to a max or shrunk to a value min. In case of absolute necessity, a space’s value beyond max can be tolerated but never the space’s value can be less than min.

The strategy adopted is:
1. put the words on the line, word after word;

2. continue until a word comes at the end of a line and overflows on the margin;

3. try to shrink without going less than min;

4. if that is not possible, try to stretch without exceeding max;

5. if that is not possible, really stretch.
3.2 Hyphenation

To obtain e-documents with visually homogeneous paragraphs, the amount of spaces to insert between words should be minimized. The hyphenation improves the text’s alignment through reducing the space between the last word of the line and the right margin. A too long word to fit at the end of a line is then broken. Normally, the word breaking takes place at the borders of graphic syllables.

The strategy adopted is:

1., 2., 3., 4. the same steps as in spacing strategy;

5. if that is not possible, try to hyphenate;

6. if that is not possible, really stretch.

A best fit strategy based on badness can help deciding among shrinking/stretching/hyphenation.

In the past, the words hyphenation was done manually, or using a hyphenation dictionary, with predefined hyphen locations. In 1983, F. M. Liang [1] published an elaborated method to find nearly all of the legitimate places to insert hyphens in a Latin word. The method is controlled by an organized tree structure of tries. The tree contains a list of hyphenation patterns; combinations of letters that allow or prohibit the word breaking. The method assigns priorities to breakpoints in letter groups. The patterns reflect the hyphenation rules of a given language. Therefore, there will be as many patterns tree structures as there are languages. This algorithm has been implemented by Donald E. Knuth in TEX.

3.3 Other practices

3.3.1 Gutenberg’s typography

Five hundred years ago, Johannes Gutenberg struggled to reach, in typesetting, the same quality as in his contemporary handwritten manuscript. By hand, words can be written tightly or loosely without getting too many dark spots or too many clear spots in the proof. Gutenberg used and improved smart techniques [18]. When he typeset the 42-line Bible, he used types of various widths, and he employed ligatures and abbreviations so that he can get the right-justification.

Nowadays, we can imagine how his typesetting works. When he set a line, he was to try types of variant glyphs with various widths for the same characters until the line had the right length. It also seems that in Gutenberg’s composition, a heavy use of abbreviations and ligatures was allowed in order to make line justification easier. Such performing corresponds to old habits of copyists. These techniques are now rarely used in text processing and publishing systems. To carry out Gutenberg’s techniques successfully, it is compulsory that presence or absence of ligatures, or glyph variants, does not change the reading habits. That is not obvious in the case of today Latin text, where the only commonly used ligatures are the f-ligatures.
3.3.2 Horizontal glyph scaling

Hz-program: The hz-program is a program for advanced typography. It has been designed by Hermann Zapf in collaboration with URW
. Its main goal was “to produce the perfect gray type area without rivers or holes with too-wide word spacing” [3]. Zapf describes his program as a complete aesthetic program for micro-typography. In the beginning, he wanted to meet, at the computer era, the level reached by Gutenberg in typography; a quality that has been considered as unreachable in the following 550 years.

The hz-program strategy is partly based on a typographically acceptable stretching or shrinking of letters, called scaling. In addition, a kerning program calculates kerning values. The kerning is not only limited to negative changes of space between two critical glyphs, it also allows in some cases positive kerning, which adds space on the line. Zapf leaved the Gutenberg’s ligatures and abbreviations to get a cheaper typesetting. The abbreviations of the 15th century are not so widespread nowadays.

The hz-program was not available to the public for purchasing, testing or reviewing. In addition, no information about the implementation was provided and the development was limited inside URW.

Improved optimum fit: In his dissertation, Hàn Thé Thành [2] attempted to improve the quality of the typographical gray produced by the optimum fit algorithm. The idea consists on adapting the spaces between words once the paragraphs have been broken into lines. Instead of changing the inter-word spacing only, he expands the fonts on the line slightly as well. Therefore, the excessive stretching of the inter-word spaces may be minimized. Thành’s ideas were inspired by the hz-program. He attempted to closely control the limits where such manipulations are allowed. He sets parameters for a better control of the acceptable stretching or shrinking of glyphs. This width modification is implemented through a horizontal scaling of fonts in pdfTEX.

3.4 Reactions

The main goal of the contributions of Zapf and Thành was to bring the level of high-quality typography reached by Gutenberg’s into digital typesetting. The authors went back to the earliest days of printing. The font’s size variation helps to improve the inter-word spacing and therefore to uniform the grayness on the page. However, it may be used with great care. Drawing the general rules for the use of the size variation is not an easy business. Zapf’s ideas should stand on their own merits. A close examination of the Gutenberg 42-line Bible shows that he only cuts off some corners/noses from his black-letter types. Gutenberg kept the counters the same. A counter is, for example, the space between the vertical strokes of letter n. The figure 1, shows on top, the normal forms and below, the narrower forms, which lack the corners of the upper types on their left hand side. The narrower forms were meant to be placed to the right of the types that have such corners on their right hand side. In this way, the types could be placed closer to each other, and some space can be saved. For this reason, the Gutenberg’s narrower types hardly stand out as different in the text. Anyway, the inter-word spaces may not be replaced with spaces inside the glyphs’ counters.

[image: image30.jpg]

Figure 1: Cutting corners of typefaces
The width variation of glyphs can not be used overall, but to only some selected glyphs [2]. For example, Peter Karow stated that the letter i could not be made wider or narrower in the glyph scaling of the hz-program [17]. Glyphs become bold or slim (see figure 2), this make lines to stand out. The width modification of glyphs through the horizontal scaling should be approached very carefully and parsimoniously.

[image: image2.png]Counter

tem

Figure 2: Horizontal scaling of glyphs
3.5 Breaking the vertical list into pages

After the paragraph has been broken into lines, a typesetting system places the lines onto the current vertical list, also known as the current page. Each line of the paragraph is a horizontal box. As well as boxes, a vertical list can contain vertical glue and vertical penalties.

The line breaking algorithm places vertical glue between the lines, so that the distance between baselines is uniform, unless the lines contain exceptionally tall or deep set matter.

It also inserts vertical penalties between the lines, to assist the page breaking process. For example, penalty for a page break immediately after the first line of a paragraph, or penalty for a page break immediately before the last line of a paragraph.

3.6 Look-ahead problem

The line breaking algorithm ‘looks-ahead’ before it makes any decisions as to where the first, or any other line break, occurs. Each line break is considered not by itself but in the context of the other line breaks. The page breaking algorithm does not carry out such a look-ahead. Each page break is considered in isolation, without regard for the other pages in the document.

The line breaking algorithm produces lines of text. These lines are then placed on the main vertical list. If enough material has collected, the page breaking algorithm cuts off enough material for one page, and the output routine is called.

Jonathan Fine concentrates on extending the idea underlying the line breaking algorithm to improve the look-ahead performance of page breaking algorithm [22].

In Arabic, the vertical document adjustment is more delicate considering the presence of diacritical marks for vocalisation (see section 4.5).

4 Justification in Arabic typography

The Arabic alphabet based writing has different characteristics. Some of these particularities are behind the processing complexity of the justification algorithms that can be used. In particular, the Arabic writing is cursive in its printed form as well as in its handwritten one. The morphology’s letters changes according to their position in the word, according to the surrounding letters, and in some cases, according to the word’s semantic (ex. Allah, Mohamed (see figure 3)). The alternative positions are then inter-dependent. The exit’s point of each glyph is attached to the entry’s point of the following glyph and there is no hyphenation.

[image: image3.png]A —)

[image: image4.png]

Figure 3: Special morphology
4.1 Ligatures

The cursive nature of the Arabic writing implies, among other things, a wide use of ligatures [19]. Indeed, Arabic writing is rich in ligatures. Some of them are mandatory and obey to grammatical and contextual rules [19]. Others are optional and exist only for aesthetic reasons, legibility and/or justification. Moreover, the connection of letters, in the course of a cursive writing, can lead to the introduction of implicit contextual ligatures. An explicit ligature is the fusion of two, three, or even more, graphemes.

Generally, the ligature’s width is lower than the one of a fused graphemes group. The aesthetic ligature [image: image5.png]

 in figure 5 is 9.65 pt wide, whereas the ligature given by the simple contextual substitutions is 14.75 pt wide.

[image: image6.png]e —E

Figure 5: Contextual and aesthetic transformations
The control of the ligatures behavior through the conversion of the implicit ligatures into aesthetic ones, bring some flexibility to the word to be adjusted into the available space on the line. The example in figure 6 shows three ligatures levels: mandatory simple substitutions, aesthetic ligatures of second degree, and finally, aesthetic ligatures of third degree. The two last ligatures levels provide shrinking possibilities of the same word.

[image: image7.emf]
Figure 6: Various levels of ligatures
The use of aesthetic ligatures of second and third degree have to take into consideration the constraints of legibility. A typesetting system should take into account three levels of resort to ligatures. The first level, where there are only implicit contextual ligatures and mandatory grammatical ligatures of second degree, such as the Lam-Alef ligature. This level is recommended for the textbooks composition where it is necessary to avoid collisions between letters and reading ambiguities. In a second level, a liberty to use some aesthetic ligatures of second degree can be taken. This level is recommended for general public books composition. A third level, where the use of aesthetic ligatures of superior degrees is allowed, and graphic expressions are free.

The resort or not to the explicit ligatures to improve the justification may take into account the graphic environment and the block regularity of concerned text. In calligraphy, once an aesthetic ligature is used, there is no obligation to use this ligature in all the text occurrences. The justification problem can be sorted out with kashida in texts composed only by implicit ligatures.

The use of ligatures to justify lines is not an Arabic writing privilege. Adolf Wild [18], the Gutenberg museum conservator in Mainz, examined the Gutenberg’s Bible from a typographical point of view. At lines level, justification was made, among other, through using ligatures instead of the today’s variable spaces.

4.2 Kashida

The genuine connections between Arabic letters are curvilinear bridges. They are extensible. This property called kashida, tamdid, madda, maT, tTwil, or aliTalat, etc., is a privilege of Arabic script, rarely met or maintained in other writing systems (see figure 4). The kashida is used in various circumstances for different purposes:

· emphasis, to emphasize a word, the stretching of an important word can also correspond to a phonetic stretching;

· legibility, to find a better letters layout on the baseline, and to correct the cluttering that can appear at the joint point between two successive letters in the same word;

· aesthetics, to embellish a word;

· justification, to justify a text.

The kashida is not a character in itself. It allows stretching some letter parts while its body is kept rigid. The example in figure 4 shows compositions of the Arabic word Mohamed. The arrows indicate the kashida, in two extensibility levels.

[image: image8.png]

Figure 4: Various curvilinear kashida
There is mandatory, allowed and prohibited stretching. The typographical weakness of a text can be determined, among other factors, by the non-respect of mandatory stretching or the presence of prohibited ones.

In terms of Arabic text justification, the kashida is a typographical effect that allows lengthening letters in some carefully selected points on the line with determined parameters so that the paragraphs left alignment can be obtained. The Arabic term tansil means the good kashida-s insertion points selection.
Current typesetting systems: In terms of text processing tools, the curvilinear kashida is, generally, still beyond what the majority of typesetting systems can afford. The kashida is not a character in itself, but an elongation of some letter parts while keeping rigid the body’s glyph. Instead of performing a kashida, the majority of typesetting systems proceed by inserting rectilinear segments between letters. The resulting typographical quality is unpleasant. Due to the lack of adequate tools, the solution consists of inserting a glyph, that is, an element of a font, rather than computing parameterized Bézier curves in real time, a ready-to-use glyph is inserted. Moreover, whenever stretching is performed by means of a parameterized glyph coming from an external dynamic font, the current font context is changed.

Curvilinear extensibility of glyphs can be afforded by certain systems through the a priori generation of curvilinear glyphs for some predefined sizes. Beyond these sizes, the system will choose curvilinear primitive and linear fragments. Of course, this will violate the curvilinear shape of letters and symbols composed at large sizes.

A better approach consists of building a dynamic font [4,5,6,7], through parameterizations of the composition procedure of each letter. To handle the elongations, a letter is decomposed into two parts: the static body of the letter and its dynamic part, capable of stretching. The introduced parameters indicate the extensibility size or degree.

4.3 Allographs

The allographs are the various shapes that the same letter can have while keeping its place in the word: isolated, initial, median or final. Even if, grammatically speaking, there are until four different shapes for each letter. The allometry is the study of the allographs phenomenon, shape, position, context, etc. Generally, the choice of an allograph corresponds to aesthetics motivations, and is left to be handled by the writer. However, the allographs presence is sometimes wished and even recommended. The shapes of letters may change according to the nature of the neighboring letters, and in some cases, according to the presence of the kashida. In the following, are presented some rules concerning the allographs use:

· the shape of the median form of the letter Beh should be acuter when it comes between two spine letters: [image: image9.png]

· the initial form of the letter Beh can take three allographs shapes according to the following letter: [image: image10.png]

· the initial form of the letter Hah should be a lawzi Hah if it precede an ascending letter: [image: image11.png]

· the initial form of the letter Ain should be a finjani Ain if it is followed by an ascending letter: [image: image12.png]

· the initial form of the letter Hah, as well as the final form of the letter Meem, change their morphologies in presence of a kashida: [image: image13.png]so000 so0e

· the letter Kaf changes its morphological shape in case of stretching and should be changed into zinadi Kaf:[image: image14.png]e

4.4 Back to Zapf and Thành

Adapting the approaches used to improve the justification of Latin text to the Arabic typography seems not to be the best solution. Zapf and Thành reasoned on the basis of the Latin typography where there are individual glyphs and no tools similar to the kashida that can be used to justify lines. Indeed, kashida is not a simple horizontal scaling to enlarge the letter width. In some cases, the kashida’s operation on the letter can totally change its glyph’s morphological shape (see figure 7). The kashida’s use is governed by rules and customs inspired by manuals and treatises on Arabic calligraphy [9].
[image: image15.png]R R ——
;’/\ horizontal scaling Kaf
= real stretching Kaf

Figure 7: Arabic stretching letter
4.5 Diacritic marks

A diacritical mark is a sign added to a letter, as the acute accent on the letter e product é. Diacritics are placed above or below letters, or in some other position such as within the letter or between two letters. In different scripts, diacritical marks have common phonetic and linguistic roles. In fact, they change the sound value of the letter to which they are added. However, in other alphabetic systems, diacritics may perform other functions. For example, Arabic vocalisation marks indicate short vowels applied to consonantal base letters. This vocalisation is some times omitted altogether in writing.

Arabic diacritical marks have an additional typographical role, which is to fill the void produced by position and juxtaposition of letters on the line. This task is influenced by the effects of Arabic text justification. If kashida is used to manage Arabic line, it influences on the positioning and the measurements of the Arabic diacritical marks [25] (see figure 8). Conversely, the presence of diacritical marks either above or below glyphs adds a vertical inter-line space that should be took into account in vertical adjustment. In this paper we are considering text without taking into account effect of vocalization, and we have chosen to only address horizontal justification, without considering vertical justification, which is also an issue in Arabic.

[image: image16.png]

Figure 8: Diacritical marks with various sizes
5 Optimum fit

The paragraph builder based on the optimum fit algorithm has been, for about thirty years ago, the only one paragraph based algorithm of justification. It is not a simple line-by-line justification. It has the advantage that all the lines of the paragraph are taken into account in the regulation of the spaces. Therefore, the result is rather homogeneous. The same algorithm has been implemented by Adobe to regulate text blocks in InDesign software. This algorithm is based on three simple primitive concepts called boxes, glue and penalties, and avoids backtracking through a judicious use of the techniques of dynamic programming. The purpose of this section is to give an overview of the Knuth’s idea that is especially relevant to this article.

5.1 Glue/penalty model

In the glue/penalty model, a glyph or a ligature is represented by a box with fixed dimensions (width, height, depth) while spaces, or their equivalents, are represented by glues. The concept of glue is more general than the space’s concept. Indeed, a glue is not a empty box with a fixed width, it can be stretched or shrunk. Therefore, in addition to its natural width, it has two more attributes; its stretchability and its shrinkability. The glues do not become wider/narrower in the same way, but in proportion to their stretchability/shrinkability. For example, according to the English and German typographic traditions, the inter-word space should be increased whenever it comes after a punctuation mark ending a sentence. The glue in such situation should have a stretchability more than a normal space has. The composition weakness of a text is determined, among other things, by the spacing quality. In a good composition, the glues approach their natural sizes. Meanwhile, the badness reflects the amount of space at the right margin.

A penalty is an element that we can insert in a horizontal (or vertical) list to discourage or encourage the typesetting system to break the list at that place. A positive penalty indicates a bad breakpoint, whereas a negative one indicates a good breakpoint. A positive infinite penalty prevents from breaks and a negative infinite penalty forces breaks. A penalty is associated with each breakpoint, this penalty can be null. However, in some situations, the composition presents an aesthetic cost. For example, the presence of hyphenation adds a non-null penalty. If two consecutive lines end with hyphen breaks or that they are visually incompatible, penalties are added. A measure of the composition quality is calculated according to glues badness and whole penalties associated to the current breakpoints or the current lines. The computed value is called demerit.

5.2 Algorithm

Considering the example of section 2.2, we demonstrate that the result given by the optimum fit algorithm is more optimal than the result given by the greedy algorithm. The first one optimizes square of the remaining spaces, also called badness of lines, to produce a more aesthetically satisfying result.

The horizontal list to break is: xxx xx xx xxxxx, for a line width 6. For simplicity, we consider a fixed-width font. If the cost of a line is defined by the square of remaining space, the greedy algorithm would give a sub-optimal solution for the problem.
xxx xx badness=0, cost=0

xx badness=4, cost=16

xxxxx badness=1, cost=1

The total cost equals to 17. An optimal solution gives a total cost equals to 11 and it would look like this:

xxx badness=3, cost=9

xx xx badness=1, cost=1

xxxxx badness=1, cost=1

D. E. Knuth proves that such problem of optimisation can be efficiently implemented using dynamic programming, for a time and space complexity.
For D. E. Knuth, a paragraph can be modeled by an acyclic graph. The candidate lines represent the edges of the graph, a numerical value is associated to each edge; the demerit. The paragraph elected is the one represented by the shortest path of the graph.

How to build this graph? And how to calculate the demerit associated to each graph’s edge?

A paragraph is a horizontal list that has to be broken into lines in an optimal way, depending on the run time as well as on the obtained visual result. Of course, certain lines may be sacrificed to save the paragraph’s justification quality. In the beginning, a paragraph is represented by a long list of nodes: character node, ligature node, discretionary node, math node, penalty node, glue node or kerning node which can be explicitly given by the user or implicitly given by the font. On the basis of this list, the algorithm will generate another list of nodes called feasible breakpoint nodes
. Such node is characterized by three things:

· the position of this breakpoint in the horizontal list;

· the number of the line following this breakpoint;

· the fitness classification of the line ending at this breakpoint.
The strategy adopted is:

· create an active node representing the beginning of the paragraph;

· run through the given horizontal list presenting the paragraph;

· for each legal breakpoint, run through the list of active nodes previously created;

· check if there is a way to achieve each feasible combination with the current point and create active node in this place, if it is possible;

· associate a cost to the feasible line;

· if two or more active nodes end a line at the same point, keep only the best one;

· choose the paragraph version with the optimal cost.

The algorithm creates a first active breakpoint node representing the beginning of the paragraph. The second active node is a feasible breakpoint depending on the first one; it can be a finite penalty node, a glue node, or a discretionary hyphen node placed at an acceptable distance to make a potential line.

What an acceptable distance means?

Let L be the inter-margin space and let l be the natural length of the material -boxes and glues- to put down in a line. Let X (resp Y) be the sum of stretching (resp shrinking) of glues. If l < L, then, the line needs to be stretched, we take r = (L-l)/X.
In practice, the line’s badness b is given by b=100 * r3. If this value exceeds 10000, the badness is considered as infinite. To save runtime, the algorithm tries first to make a paragraph without any hyphenation. The parameters pretolerance and tolerance are the limits on how bad a line can be, respectively before and after hyphenation. For simplicity, we will assume that hyphenation is never tried
. The badness is compared to pretolerance. If b < pretolerance, the breakpoint is feasible. The fitness classification will be calculated for the line that has just ended.

· decent

if 0 ≤ b ≤ 12
· loose

if it has been stretched with 12 < b < 100
· very_loose
if it has been stretched with b ≥ 100
As we advance in the horizontal list of nodes, l becomes greater than L, i.e., the line needs to be shrunk, in this case the value r = (l-L)/Y. The fitness classification will be then calculated.
· decent

if 0 ≤ b ≤ 12
· tight

if it has been shrunk with b > 12
If r > 1 we put b = ∞ + 1, it is important to distinguish between the situation where b = ∞ and that where b = ∞ + 1. In the first case, the current active node should be still active; while in the second case, the current active node should no longer be active.

Back to normality, if everything goes well, and badness is less than pretolerance, thus, the current node is placed at an acceptable distance to make a potential line. For each potential line, a demerit is calculated, taking account of badness and different penalties. Some penalties which can appear are:

· hyphenation penalty;

· double hyphenation penalty;

· penalty for adjacent incompatible lines.
In view of the badness tolerated on each line, and in view that the system can expand or contract inter-word spaces, the algorithm considers various ways to achieve a feasible line from the current active node. The nodes created in this way will be linked in a list.
If we are too far from an active node, i.e., l >> L, that node is deactivated. The new generated nodes will be used to identify other active nodes and so on, until the paragraph’s end is reached. For formal reasons, the paragraph’s end is considered to be a breakpoint. After all, it is the end of a line. Given the different nodes, we build an acyclic graph. The vertices of this graph are the different feasible breakpoints, and the edges are pairs of adjacent nodes making a feasible line. The problem becomes to find the shortest path of the graph. In other words, to make a choice between all the candidate paragraphs, the version with the smallest possible value for the total demerit. Therefore, the paragraph is chosen with the contribution of all its lines.
If the paragraph contains n breakpoints, the number of situations that are to be evaluated naively is 2n. However, using the dynamic programming method, the complexity of the algorithm can be reduced to O(n2). Other simplifications can be evoked, for example, unlikely cases are not examined, such a break in the first word of the paragraph. This leads to an efficient algorithm with a running time of almost of order n.

The following pseudo-code implements the optimum fit algorithm:

active = [0]; nwords = len(paragraph)

for w in range(1,nwords)

check the feasibility of breaking after the word w

print "Recent word",w

for a in active

line = paragraph[a:w+1]

if w == paragraph[nwords-1]
badness = 0 # last line will be set perfect

else

badness = compute_badness(line)

print "...line=",line,"; badness=",badness

if badness > pretolerance

active.deactivate(a)

print "active point",a,"deactivated"

else

 # compute the cost of breaking after w

update_demerit(a,w,badness)

active.append(w)
5.3 Texteme and paragraph breaking

The digital text representation model used today is the one proposed by the Unicode standard [20]. It is based on the concepts of character and glyph. In the last few years, the text processing tools make use of characters in first. The glyph issues are handled in the last stage, namely the rendering. Before being displayed, an e-document undergoes changes. In the beginning, a document is a string of structured characters. After processing, it becomes a string of arranged glyphs, according to the rules of the typographic art.

Going from characters to glyphs and therefore coming back can be a complicated process [13]. One glyph can be associated with multiple characters and one character can be associated with multiple glyphs. Even more, multiple glyphs can be associated with multiple characters in a different order.
Y. Haralambous proposes a new approach to the character with report to glyph issue: he merges them with a number of additional properties related to the language presentation, or other types of metadata into a single atomic text unit called texteme [15]. A texteme is a set {c, g, p1 = v1… pn = vn}, where c is a character code, g a glyph index and a list of named properties pi (1 ≤ i ≤ n) taking value vi. A simple texteme is a pair (c, g) and a pointer to an empty list of properties, a text processing can be considered as a textemes enrichment process with properties.

A new approach of the paragraph breaking is proposed through an alternative text model based on the texteme concept and dynamic typography [14]. This approach consists on starting with a paragraph as a linked list of textemes. The text processing enriches the textemes with alternative glyph properties whenever the current font provides an alternative form for such glyph. The breaking algorithm takes into account the existence of such alternative forms to provide more flexibility and therefore more possibilities for breaking. This approach suggests thinking on a more theoretical level for solving, admittedly fundamental, but still mostly practical, problems.

6 Proposition for Arabic justification

6.1 Smart fonts

A modern typesetting system should be able of manipulating the so called smart font formats, such as OpenType. In an Arabic rendering process, OpenType tables can carry out the following basic functions:

· supply the glyph corresponding to the pair (character, contextual form);

· supply grammatical ligatures (ex. Lam-Alef) and aesthetic ones;

· supply specific alternative forms for glyphs regarding context;

· supply kerning between single or ligatured glyphs;

· place short vowels and other diacritics on isolated glyphs or on ligatured components.
One could imagine some of these features being contextual, with or without backtrack and look-ahead. OpenType provides also what we can call super-OpenType features. In this context, comes the jalt (justification alternative) feature [12]. The jalt table shows the user some glyph variants, wider or narrower letters that are intended to improve justification. We will use this feature to assist the paragraph builder engine to optimize the paragraph typographical gray during justification. For example, this feature in the Arabic Typesetting font provides us stretched alternative forms for fourteen glyphs (see the table 1).

[image: image17.png]2

3 Sl A

22| #

2 Sl o

Table 1: jalt table in Arabic Typesetting font
As we have seen in section 2, to perform the text justification, the Arabic writing provides various techniques coming from its handwriting traditions. These techniques are not based on the insertion of variable spaces between words. Therefore, the unpleasant spaces are avoided and a balanced aspect can result. A horizontal scaling of glyphs is not allowed too.

A paragraph builder algorithm, either a simple line-by-line justification based or a paragraph based one, can use other glyph variants -wider or narrower- to improve lines justification. These variants could be ligatures, allographs, or stretched glyphs with kashida. In this case, we should be careful not to break the strict rules governing the use of some allographs and that correspond strictly to their context [9]. Fortunately, the OpenType format has been equipped with jalt, or GSUB lookup type 3, jalt defines alternative forms for some glyphs. These forms are specifically designed for justification purposes. They would have more or less advance width as needed. For glyph indexes GIDs found in the jalt coverage table, the application passes a glyph index GID to the feature and gets back a new GID. A glyph could have more than one alternative form placed in any order since they have the same functionality. A wysiwyg software will probably show all variants and offer the user the choice in an interactive manner.

As far as we know, although it is not used, by any text composition system, this allows us to distinguish between allographs for contextual use and glyph variants provided by the font for justification purpose. The calt (contextual alternative) table, or GSUB lookup type 6, maps one or more default glyphs to replace the glyphs, and specifies the context where each substitution occurs. Thus, the contextual variants may be elements of the calt table when the variants used to improve justification may be elements of the jalt table. We use the libotf library [26] to read the OpenType Layout Tables from the OTF file.

6.2 Dynamic typography

Dynamic typesetting is a set of typesetting techniques where glyphs can be modified during the line break process. Such techniques have been applied by Gutenberg in 42-line Bible. He was exploiting alternate forms, ligatures and abbreviations to optimize justification on the line level.

Ligatures, in the 42-line Bible as in handwriting, were certainly a good way to achieve fine control over the widths of words. In Arabic script, ligatures are very numerous. Unlike to Latin readers, Arabic readers do not usually worry of the ligatures presence. Therefore, the current implementation is restricted to the use of simple substitutions and do not considers multiple substitutions or ligatures.

The main motivation of our improvement is to bring the use of alternative forms to the paragraph based line breaking algorithm. Therefore, the acyclic graph modeling paragraph will be enhanced through introducing other breakpoint nodes so that the optimization of the paragraph will be improved.
Two breakpoint nodes are extremities of a glyphs list that generates an acceptable distance to form a potential line. We allow the use of a unique stretched alternative according to the Arabic calligraphic rules [9].
Suppose that a variable l contains the width produced by the group of glyphs and glues on the line, while L is the value where the line should be justified. We go through the horizontal list, and whenever a glyph node is encountered, we check if the jalt table provides another alternative. As long as we found no entries in the jalt, we proceed as in the ordinary optimum fit algorithm. The value l is increased by the width of that glyph and the feasibility of the legal breakpoints is checked. This procedure consists on running through the active list to see what lines can be made from the active nodes to the current legal breakpoint node. An active node is generated for each feasible breakpoint and added to the active list. In the contrary, when the current node is a glyph with an alternative form in the jalt table, we calculate the difference between the two widths: the default glyph width and the alternative form width. The variable backward contains this difference. The widths of the two lines advance with a shift amount of backward. The badness is calculated twice taking account of the backward produced by the alternative form. There will be two tests for the breakpoint feasibility: once using the default width, and twice using the alternative form’s width. If all goes well, and one of the two values b1 or b2 is less than the pretolerance then, the current legal breakpoint is a feasible one. Many cases may arise: this feasibility comes from the default glyph’s use or from the alternate form’s use. We create an active node and we label this node to indicate from what glyph’s use it is stemmed. For the created node, we indicate the position of the glyph in question. If the node recently found comes from the two calculations, and both badness b2 and b2 satisfy the feasibility condition. Both demerits d1 and d2 are calculated, and we keep only the one with the minimal demerit, since the second situation will never be chosen in the final paragraph breaks. This observation allows us to omit a substantial number of feasible breakpoints from any more consideration. An other case may also arise when the two demerits are equal to a close value. Then, we keep the composition with the non-stretched glyph. Of course, we prefer a justified line without making resort to the stretched alternative forms. Indeed, we consider so many possibilities as stretched alternate forms occur in a line. That gives us more opportunities to avoid some undesirable situation, such as the succession of two elongations in two consecutive lines. However, we do not consider combination of two stretched letters in the same line according to some specifications of Arabic text justification [9] which prohibit the use of two elongations in the same line.

A stretched line may well achieve desired justification before the ordinary line. In this case, it is almost the end of the ordinary hypothetical line, and already at the beginning of the line follows the stretched hypothetical line. If certain alternative form appears here, it will be listed, and associated with the feasible breakpoint node recently created. When the current position in a horizontal list is too far from an active node, that means that the values b1 and b2 are higher than the pretolerance, that node is deactivated. Then, the backward is reset to zero. Continuing in this way, we come to the end of the paragraph that will be declared active.

6.3 Authorized and prohibited elongations

Our objective was to determine the contexts behind the use of the kashida and the allographs [9]. Our implementation aims also to bring this graphical grammar. This study comes from an exploration in calligraphic compositions and historical references on the subject. Our purpose was not to perform a handwriting imitation, but the best rules may be found in calligraphy. These rules avoid the semantic overloading and take care not to replace the white rivers with black ones produced by successions of kashida-s in consecutive lines. Some of these rules are not categorical, and vary among: mandatory, very common, rare, or forbidden. Generally, when a calligrapher creates a visual artwork it is through intuition. Our objective was to validate, formalize and make explicit some of such intuitions. It is so hard to automate such human intuition.

We consider the context concerning where to use kashida and allographs [9]. This context

can be graphic: number of kashida-s and their degree of extensibility, their positions on the line, occurrences where stretching is allowed and so on. This context could also be semantic [8].
Penalties present an efficient tool to communicate choices to the line break process. Using penalties, a professional, as well as a non-skilled user, can tell the system about his typographic and semantic preferences. In our implemented model, we associate penalties to each use of a stretched alternative form. These parameters specify the demerits added for lines. These penalties are independent from where the line break occurs. On the contrary, they depend on the use of the stretched alternative forms to achieve the line. Increasing the value of these parameters encourage the system to avoid prohibited elongations, even at the cost of other aesthetic considerations as avoiding to loose inter-word spacing. The user should assign a rather large value to these parameters to have an effect. At this point, we distinguish among several kinds of penalties.

6.3.1 Position penalty

The historical references propositions concerning the legitimate places of kashida show differences in some details [9].
In terms of justification, the heavy use of the kashida at the end of a line is due to a particular reason: calligraphers can estimate the elongation only when they come near the limit of a line. Therefore, the kashida is triggered by the distance to the end of line. The superposition of two elongations on two consecutive lines can be seen only as a defect. To avoid the “stairs” effect resulting from such superposition, a uniform typographical grid can be advised.

In our model, for adjacent lines where two elongations are superposed, we associate a penalty to the second line. The superposition of three elongations on three adjacent lines evokes, of course, a higher penalty.
6.3.2 Occurrence penalty

A classification of the words according to their number of letters leads to an enumeration of the occurrences where stretching is allowed [9]. Generally, it is strictly prohibited to stretch a word with two letters and usually the kashida is omitted in a word composed of three letters. Words with four letters are the most susceptible to be stretched, and it is preferable to use the kashida in the second letter.

We also give rules concerning degrees of extensibility in metric dot for each letter according to its context [9]. For example, the elongation of letter Beh is authorized, but not approved, if it is followed by Alef, Jeem, Dal, Reh and Lam; it is authorized and also approved if it is followed bay Tah; and it is prohibited if it is followed by Ain, Seen, Feh, Qaf and kaf. If elongation is authorized, the letter Beh can be stretched up to twelve diacritic points.

In our model, a pointer variable runs through the given horizontal list as we look for breakpoints. Another variable stays a step behind this pointer, and a second one stays two steps behind the pointer variable running through the horizontal list. These variables allow us to analyze the context of a glyph if it has an alternative form in the jalt. We add penalties where elongations are strictly prohibited. In the other cases, we should be parsimonious in order to not compromise the typographical gray quality.

6.3.3 Semantic penalties

Contrary to the previous types of penalties, the semantic penalties depend on where the break has been occurred. Increasing the value of these parameters will convey a message to discourage the system to avoid some semantically prohibited breaking; for example, between two given words where a break is not recommended; for instance, within a full name of a person or inside a compound word.

6.4 Practical results

Basically, to implement our model, we need tow components: a font and a rendering technology. For the font, we used the Arabic Typesetting font distributed with the Microsoft Visual OpenType Layout Tool in the OpenType format. The Arabic Typesetting font contains the jalt table. It has been used only for illustration without altering it. Many shaped glyph forms, such as ligatures and alternative forms, have no Unicode encoding. These glyphs have GID’s in the font, and applications can access these glyphs by “running” the layout features depending on these glyphs, particularly, glyphs in the jalt table. This feature in the Arabic Typesetting font provides us some alternative stretched glyphs (see the table 1 in the subsection 6.1). The number of provided alternative forms is rather limited
. We also omitted the use of the alternative form of final Alef in the first row of the table. Actually, we suppose that a kashida is a forward extension of a glyph.
The second component we need is a rendering technology implementing a based paragraph breaking algorithm and taking the advantage of what an OpenType font has to provide. [image: image18.png]

 is a typesetting system [21] based on a merger of the TEX system with Unicode and modern font technologies. It offers the potential of the optimum fit algorithm and a support for OpenType font.

In figure 9, we give an example illustrating the differences between a paragraph processed with the optimum fit algorithm and the same paragraph processed with our improved algorithm. In this example, we remark the algorithm’s choice of the [image: image19.png]

 instead of the default glyph [image: image20.png]

 in the first and third line, and the [image: image21.png]

 instead of the [image: image22.png]

 in the second line. In the second line, it would have chosen the glyph [image: image23.png]

 instead of the first [image: image24.png]

, certainly this composition will introduce a position penalty since it came below an elongation in the first line. It would also have chosen the glyph [image: image25.png]

 instead of the second [image: image26.png]

. Such situation introduced another penalty position. Since, it came above an elongation in the third line of the paragraph.

[image: image27.png]T o \

ada Lol sl LN 55
J 5 e gt §]
osad ;,(\:; .;YQ.VKE;:'J A \
3o 4 5&» Q\ [EFERIPSNN l,k"'

A
W et oo - oyl oo b
blal) by asnl b 5\>\)

 [image: image28.png]2de ool oyl ML gy

(L; s Mfgqg TN
: - \\?r,\jljjbcb_‘\
EY @2;...2\;)\ 093 -oesadl o e

Cbled) b aen i b 5\> o

Figure 9: In left, regular typesetting,
and in right, typesetting with our improved optimum fit
7 Conclusion

In this paper, we presented an overview on how the Arabic text justification differs from other writing systems. We also gave a significant model that improves the typographical gray quality obtained with the optimum fit algorithm. The current implementation is a very satisfying and encouraging step to provide a complete model in observation of the strong rules of the Arabic text justification.

Some issues of perspectives could be the use of multiple substitutions of glyphs, such as ligatures and abbreviations, to improve Arabic text justification. To do so, one must be able to enable or disable them dynamically, according to the requirements of each line of text and regarding the constraints of legibility.

These days, designers can specify margins, padding, letter spacing in a Web page in a better way, thanks to cascading style sheets. Therefore, on the Web, the size, the resolution, and even the layout of page can vary with the browser and the system used to view the site. Thus, the development of a sufficient justification for the Web becomes a delicate problem.

References:

[1] F. M. Liang. Word Hy-phen-a-tion by Comput-er. PhD thesis, Stanford University, 1983.

[2] H. T. Thành. Améliorer la typographie de TEX. Cahiers Gutenberg, actes du congrès GUT’99, No. 32, 1999.

[3] H. Zapf. About micro-typography and the hz-program. Electronic Publishing, Vol. 6, No. 3, pp. 283–288, 1993.

[4] D. M. Berry. Stretching Letter and Slanted-baseline Formatting for Arabic, Hebrew and Persian with ditroff/ffortid and Dynamic PostScript Fonts. Software: Practice & Experience, Vol. 29, No. 15, pp. 1417–1457, 1999.

[5] A. Lazrek. CurExt, Typesetting variable-sized curved symbols. EuroTEX’2003: 14th European TEX Conference, pp. 47–71, 2003.

http://www.ucam.ac.ma/fssm/rydarab/doc/communic/curext.pdf

[6] A. M. Sherif and H. A. H. Fahmy. Parameterized Arabic font development for AlQalam. TUGboat, Vol. 29, 2008.

[7] A. Bayar and K. Sami. How a font can respect rules of Arabic calligraphy. International Arab Journal of e-Technology, Vol. 1, No. 1, 2009.

[8] V. Atanasiu. Allographic Biometrics and Behavior Synthesis. EuroTEX’2003: 14th European TEX Conference, pp. 103–108, 2003.

[9] M. J. Benaatia, M. Elyaakoubi and A. Lazrek. Arabic Text Justification. TUGboat, Vol. 27, No. 2, pp. 137-146, 2006.

https://www.tug.org/members/TUGboat/tb27-2/tb87benatia.pdf

[10] D. E. Knuth and M. F. Plass. Breaking paragraphs into lines. Software: Practice & Experience, Vol. 11, No. 11, pp. 1119–1184, 1981.

[11] D. E. Knuth. TEX: The Program, Computers and Typesetting. Vol. B, Addison-Wesley, 1986.

[12] Microsoft Corporation. OpenType Specification. http://www.microsoft.com/typography/otspec/

[13] Y. Haralambous and G. Bella. Injecting Information into Atomic Units of Text. Proceedings of the ACM symposium on document engineering, pp. 134–142, 2005.

[14] Y. Haralambous and G. Bella. Fontes intelligentes, textèmes et typographie dynamique. Document numérique, Vol. 9, pp. 167–216, 2006.

[15] Y. Haralambous and G. Bella. Omega Becomes a Texteme Processor. EuroTEX, 2005.

[16] J. Hochuli and R. Kinross. Designing books: practice and theory. London: Hyphen Press, 1996.

[17] P. Karow. Le programme hz : micro-typographie pour photocomposition de haut niveau. Cahiers GUTenberg, No. 27, 1997.

[18] A. Wild. La typographie de la Bible de Gutenberg. Cahiers Gutenberg, No. 22, pp. 5–15, 1995.

[19] Y. Haralambous. Tour du monde des ligatures. Cahiers Gutenberg, No. 22, pp. 69–80, 1995.

[20] The Unicode Consortium. The Unicode Standard, version 5.0. Addison-Wesley, 2006.

[21] J. Kew. Unicode and multilingual typesetting with XETEX. TUGboat, Vol. 27, No. 2, pp. 228-229, 2006.

[22] J. Fine. Line breaking and page breaking. TUGboat, Vol. 21, No. 3, pp. 210-221, 2000.

[23] M. Châtry-Komarek. Tailor-Made Textbooks, A Practical Guide for the Authors of Textbooks for Primary Schools in Developing Countries. CODE Europe, Oxford, 1996.

[24] W. Peck. Great Web Typography. Wiley Publishing, Inc. 2003.

[25] M. Hssini, A. Lazrek and M. J. Benatia. Diacritical signs in Arabic e-document. CSPA’08, The 4th International Conference on Computer Science Practice in Arabic, Doha, Qatar, April 1-4, 2008.

[26] National Institute of Advanced Industrial Science and Technology (AIST). Libotf -- Library for handling OpenType fonts. http://www.m17n.org/libotf/

Biography:
[image: image1.emf]
Mohamed Elyaakoubi is a Ph.D. student in department of Computer Science at Cadi Ayyad University. He is a member of multilingual scientific e-document processing team. His current main research interest is multilingual typography, especially publishing of Arabic e-document observing strong rules of the Arabic calligraphy. Email: m.elyaakoubi@ucam.ac.ma
[image: image29.png]

Azzeddine Lazrek is full Professor in Computer Science at Cadi Ayyad University in Marrakesh. He holds PhD degree in Computer Science from Lorraine Polytechnic National Institute in France since 1988, in addition to State Doctorate Morocco since 2002.

Prof. Lazrek works about Communication multilingual multimedia e-documents in the digital area. His areas of interest include multimedia information processing and its applications, particularly, Electronic publishing, Digital typography, Arabic processing and History of sciences. He is person in charge of the research team Information Systems and Communication Networks and the research group multilingual scientific e-document processing. He is Invited Expert at W3C. He leads multilingual e-document composition project with some international organisms. He participates by contribution and organization in some scientific international manifestations. He is member of several national and international scientific associations.

Email: lazrek@ucam.ac.ma
� Such places are called points of legal break.

� URW company (Unternehmensberatung Rubow Weber – from the founders’ names).

� Real candidates for breaking, both legal and probable.

� Since the 10th century, hyphenations in Arabic writing have been strictly prohibited.

� We are developing an Arabic font observing strong rules of the Arabic calligraphy in the OpenType format.

